If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-45x+72=0
a = 2; b = -45; c = +72;
Δ = b2-4ac
Δ = -452-4·2·72
Δ = 1449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1449}=\sqrt{9*161}=\sqrt{9}*\sqrt{161}=3\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-3\sqrt{161}}{2*2}=\frac{45-3\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+3\sqrt{161}}{2*2}=\frac{45+3\sqrt{161}}{4} $
| 3=10-2y | | 4x+15=4x+20 | | −36=-12y-48−12y−48 | | 24x/24=8 | | 4x+7=(-2×)+19 | | N^2-5n+144=0 | | 0x+9=10 | | z÷2=26 | | 3=15/(x-2)+15/(x+2) | | 2x-1/2x=7 | | 3=15/(x-2)+15(x+2) | | 2x-0.5x=7 | | t^2-t+250=0 | | 2(3x−1)=22 | | 2n/9=6 | | 4(n-1)/n+1=0 | | 12p–7=14 | | 80√3-3x=x | | 5(x–7)=–15 | | 2(y–4)+4(y+2)=30 | | 14=x-0.30x | | 96=-12p | | 96=-12x0 | | 7/x+35=10 | | -2x-4x-8=-3x+9 | | 4n*n=256 | | (0.005)^y=1000y= | | (0.005)^y=1000 | | 5n-3=1/3n+2 | | s/5=-2 | | 3(t+6)=24 | | 0.05^x=1000 |